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1 Introduction

There is considerable interest nowadays in the inverse problem
of Lagrangian mechanics that deals with the determination of a
suitable Lagrangian function, which when used with the standard
apparatus of the calculus of variations, yields Euler–Lagrange
equations that are identical to a given set of equations of motion.
The inverse problem is of significant interest from a theoretical
standpoint since the use of Lagrangians brings the descriptions of
dynamical systems within the compass of the Lagrangian frame-
work, which, along with the action principle, provides a deeper
understanding of our physical world. Besides providing compact
descriptions of a complex dynamical systems, they are also of
considerable computational value since numerical methods
using discrete Lagrangians are known to often have significant
advantages over standard integration methods, for example, over
Runge–Kutta algorithms.

While it is standard to use Lagrangians for undamped systems,
finding Lagrangians for systems with damping is considerably
more difficult. General conditions for the existence of Lagran-
gians were first obtained by Helmholtz and are referred to as the
Helmholtz conditions [1,2]. However, even for two-degrees-of-
freedom damped systems, the application of Helmohltz’s condi-
tions remains an onerous, difficult, and complex task requiring
the solution of coupled partial differential equations (see, for
example, Ref. [3]). Because of this, no applications of Helm-
holtz’s conditions to systems beyond a few degrees-of-freedom
appear to be available to date. A major breakthrough in this area
occurred when Douglas analyzed, in considerable detail, two-
degrees-of-freedom systems and obtained the necessary and suffi-
cient conditions for the existence of Lagrangians without utilizing
the Helmholtz conditions [4]. While considerable progress has
been made in finding the Lagrangians for several linear and non-
linear equations of motion for damped single and two-degrees-of-
freedom systems [5–8], there appears to be little work done to
date that provides the results for multi-degrees-of-freedom sys-
tems of the type commonly encountered in engineering practice
(see, e.g., Refs. [9–11]). Finding Lagrangians for general multi-
degrees-of-freedom systems is substantially more difficult than

finding them for single- or two-degrees-of-freedom systems, and
this is the main reason for there being such little progress made to
date in this area.

Udwadia and Cho provide some results dealing with general
damped linear multi-degrees-of-freedom systems [3]. They
provide Lagrangians for damped linear mechanical and structural
systems with symmetric mass and stiffness matrices. The Lagran-
gians that they obtain for systems in which the damping matrix is
skew-symmetric are physically based (also called, standard) in
that the kinetic and potential energy terms in the Lagrangian can
be identified. They also obtain Lagrangians for other classes of
linearly damped multi-degrees-of-freedom systems in which the
damping and stiffness matrices are significantly restricted to have
specific structures, and in which the parameters in them depend in
specific ways on elements of the mass matrix. The results in this
paper go beyond those in Ref. [3] in that they are applicable to all
classically damped multi-degrees-of-freedom dynamical systems.

Virtual (also called, nonstandard or unnatural) Lagrangian func-
tions that cannot be split into kinetic and potential energy compo-
nents have also gained considerable importance in recent years
since the Euler–Lagrange equations that they engender can be
made to match numerous nonlinear evolution equations com-
monly found in physics and engineering. However, here again, the
focus has mainly been on systems with a very small number of
degrees-of-freedom (typically one or two) [12], and the results on
systems with large numbers of degrees-of-freedom, as commonly
arise in engineering practice, are, to the author’s knowledge, very
few, if any.

This paper deals with the inverse problem of Lagrangian
mechanics for classically damped linear multi-degrees-of-freedom
dynamical systems, and the results obtained appear to be new.
These dynamical systems are widely used to model the small
amplitude motions (vibrations) of structural and mechanical com-
ponents and subcomponents in the fields of civil, mechanical, and
aerospace engineering, and in acoustics. Use of classically
damped linear systems in analysis and design is widespread today,
and quite routine, in engineered systems, like, building and bridge
structures, aircraft assemblies, spacecraft structures, and automo-
tive components. In contrast with the methods used in Ref. [3],
the methods used here are simple and elementary.

The dynamical equation describing a damped linear n-degree-
of-freedom system that arises most frequently in engineering
applications is [9–11]

~M€z þ ~C _z þ ~Kz ¼ 0 (1)

where z is a real (generalized) displacement n-vector (n by 1

vector), ~M > 0; ~K ; and ~C are real, constant, symmetric matrices,
and the dots denote differentiation with respect to time, t. The

matrices ~M, ~C, and ~K above are the mass, damping, and stiffness
matrices, respectively. Most often the system is assumed to be
classically damped, for which the necessary and sufficient condi-

tion is ~CM�1 ~K ¼ ~KM�1 ~C [13]. This condition includes the
so-called “proportional damping” situation that is commonly
assumed in structural dynamics, in which the damping matrix
~C ¼ a ~M þ b ~K , where a and b are constants [9–11]. Classically
damped systems have so-called classical normal modes of
vibration.

Making the transformation z ¼ ~M
�1=2

x in Eq. (1) and premulti-

plying it by ~M
�1=2

, one obtains the relation

€x þ C _x þ Kx ¼ 0 (2)

where C ¼ ~M
�1=2 ~C ~M

�1=2
and K ¼ ~M

�1=2 ~K ~M
�1=2

. The necessary
and sufficient condition stated earlier for the system to be classi-
cally damped then requires that the matrices C and K commute
with one another, i.e., CK ¼ KC. This in turn implies that there
exists an orthogonal matrix T that simultaneously diagonalizes the
symmetric matrices C and K [14].
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Equation (1) is evidently equivalent to Eq. (2), and it is this
equation that we shall be using in the sequel. In passive structural
systems, the matrix C is positive definite.

Our aim is to first find Lagrangians whose Euler–Lagrange
equations result in Eq. (2). Next, we find a quantity that this
n-degree-of-freedom classically damped dynamical system con-
serves over time, i.e., an invariant of the motion.

2 Lagrangians for Classically Damped Linear

Multi-Degrees-of-Freedom Systems

2.1 Some Simple Preliminaries. We begin by considering a
single degree-of-freedom damped linear system described by the
equation

€y þ d _y þ ky ¼ 0 (3)

where d and k are constants. Using the transformation

yðtÞ ¼ wðtÞe�dt=2 (4)

one obtains

_y ¼ _we�dt=2 � d

2
we�dt=2 and €y ¼ €we�dt=2 � d _we�dt=2 þ d2

4
we�dt=2

(5)

and Eq. (3) then simplifies to

€w þ k� d2

4

� �
w ¼ 0 (6)

in which the (velocity) term in _w is eliminated. A Lagrangian for
Eq. (6) is then simply

L w; _wð Þ ¼ _w2

2
� 1

2
k� d2

4

� �
w2 (7)

The first term on the right-hand side of Eq. (7) is the kinetic
energy of the system described by Eq. (6), and the second member
is its potential energy. The Lagrangian is the difference between
the kinetic and the potential energy.

Going back to the variable yðtÞ in Eq. (4), and noting from the
first relation in Eq. (5) that _w ¼ ð _y þ ðd=2ÞyÞedt=2, a Lagrangian
of our original system given by Eq. (3) can then be written as

L y; _y; tð Þ ¼ 1

2
_y þ d

2
y

� �2

� k� d2

4

� �
y2

" #
edt (8)

We thus have the following result.
Result 1: A Lagrangian of the equation

€y þ d _y þ ky ¼ 0

is

L y; _y; tð Þ ¼ 1

2
_y2 þ d _yyþ d2

2
y2

� �
edt � k

2
y2edt (9)

Proof. Equation (8) simplifies to that given above. Using the
Lagrangian L in Eq. (9), it can be verified that the Euler–Lagrange
equation

d

dt

@L

@ _y

� �
� @L

@y
¼ 0 (10)

results in Eq. (3). We note that the Lagrangian in Eq. (9) is a
physically based (standard) Lagrangian, as it is deduced from
Eq. (7), which is interpretable as the kinetic energy minus the
potential energy. �

Remark 1. Equation (6) in the variable wðtÞ describes an
undamped system and its energy is conserved! In fact the terms
related to the kinetic and potential energy of the system have been
identified in Eq. (7). The energy of the system described by
Eq. (6), which is conserved, is therefore given by

Ew ¼
1

2
_w2 þ 1

2
k� d2

4

� �
w2 (11)

which, in terms of the coordinate yðtÞ becomes (on using Eq. (4))

E ¼ 1

2
_y þ d

2
y

� �2

þ k� d2

4

� �
y2

" #
edt (12)

Since Ew is constant for all time, we then find that Eq. (3) (in the
variable yðtÞ now) admits an invariant given by

E ¼ 1

2
_y2 þ d _yyþ ky2
� �

edt ¼ constant (13)

Result 2: Another Lagrangian for the equation

€y þ d _y þ ky ¼ 0

is

L y; _y; tð Þ ¼ 1

2
_y2edt � k

2
y2edt (14)

Proof. Substitution of this Lagrangian in Eq. (10) gives Eq. (3). �

2.2 Lagrangians for Classically Damped Linear Multi-
Degrees-of-Freedom Systems. For the dynamical system
described by Eq. (2) to be classically damped we must have
CK ¼ KC: As mentioned before, when these matrices commute,
there exists an orthogonal matrix T (i.e., TTT ¼ I) such that [14]

CT ¼ TD and KT ¼ TK (15)

where the diagonal matrix

D ¼ diagðd1; d2;…; dnÞ (16)

and the diagonal matrix

K ¼ diagðk1; k2;…; knÞ (17)

Using the change of variable

xðtÞ ¼ TyðtÞ (18)

in Eq. (2), where we denote the n-vectors xðtÞ ¼ ðx1; x2;…; xnÞT
and yðtÞ ¼ ðy1; y2;…; ynÞT , we get

T€y þ CT _y þ KTy ¼ 0 (19)

which upon premultiplication by TT gives, by virtue of relations
(15), the n uncoupled set of modal equations

€yi þ di _y þ kiy ¼ 0; i ¼ 1; 2;…; n (20)

It should be noted that though in structural dynamics the matrices
C and K are usually taken to be positive definite, this is not
required for uncoupling of the equation of motion given in Eq. (2)
to yield Eq. (20) via the transformation (18) as has been done
here; only symmetry of the matrices C and K is needed.

Each of the n equations in equation set (20) represents a linearly
damped system of the type discussed in Sec. 2.1, and so Lagran-
gians for each of these n uncoupled equations are known from
Results 1 and 2 in Sec. 2.1.
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Starting with Result 1, a Lagrangian for the system of equations
described by the equation set (20) can then be simply written as

L y; _y; tð Þ ¼
Xn

i¼1

1

2
_y2

i þ di _yiyi þ
d2

i

2
y2

i

� �
edi t � ki

2
y2

i edi t

� �
(21)

The ith term in the summation above is a Lagrangian for the ith
equation of the set given in Eq. (20). Furthermore, each Lagran-
gian has been shown to have a physical meaning in terms of the
kinetic and potential energy.

As with the single degree-of-freedom system, all that remains
now is to transform Eq. (21) back to the original variable, xðtÞ.

We begin by noticing that Eq. (21) can be written in a more
compact form as

L y; _y; tð Þ ¼ 1

2
_yTeD t _y þ _yTeD tDyþ 1

2
yTeD tD2y

� �
� 1

2
yTeD tKy

� �
(22)

Note that D is a diagonal matrix (see Eq. (16)) and hence eD t is
also diagonal; furthermore, eD tDm ¼ DmeD t for any integer m.
Also, KeD t ¼ eD tK, since both the matrices on either side of the
equality are diagonal.

To transform the Lagrangian in Eq. (22) back to our original
variable xðtÞ, we use the relation yðtÞ ¼ TTxðtÞ, which follows
from Eq. (18). This gives

L x; _x; tð Þ ¼
�

1

2
_xTTeD tTT _x þ _xTTeD tDTTxþ 1

2
xTTeD tD2TTx

� �

� 1

2
xTTeD tKTTx

�
(23)

Equation (15) can be expressed as C ¼ TDTT , so that
TeD tTT ¼ eC t. Furthermore, since T is an orthogonal matrix,
TeDtDTT ¼ TeDtTTTDTT ¼ eCtC. Also, TeDtD2TT ¼TeDtTTTD2TT

¼ eCtC2, and similarly TeDtKTT ¼ eCtK.
Using these relations in Eq. (23), we then have our first main

result.
Result 3: A Lagrangian for the classically damped n-degree-of-

freedom system

€x þ C _x þ Kx ¼ 0

is given by

L x; _x; tð Þ ¼ 1

2
_xTeC t _x þ _xTeC tCxþ 1

2
xTeC tC2x

� �
� 1

2
xTeC tKx

(24)

Proof. We obtain

d

dt

@L

@ _x

� �
¼ d

dt
eC t _x þ 1

2
eC tCx

� �

¼ eC t€x þ eC tC _x þ 1

2
eC tC _x þ 1

2
eC tC2x

¼ eC t€x þ 3

2
eC tC _x þ 1

2
eC tC2x (25)

and noting that KC ¼ CK we get

@L

@x
¼ 1

2
eC tC _x þ 1

2
eC tC2x� eC tKx (26)

Using these relations in the Euler–Lagrange equation the result
follows. �

One could also start with the expression for the Lagrangian
given in Eq. (14) (see Result 2 in Sec. 2.1) for each of the n
uncoupled equations of the set (20). A Lagrangian for the system

of equation (20) can be written, in a fashion similar to what was
done above, as

L y; _y; tð Þ ¼ 1

2
_yTeD t _y � 1

2
yTeD tKy (27)

Transforming back to the coordinates xðtÞ ¼ TyðtÞ then yields

L x; _x; tð Þ ¼ 1

2
_xTTeD tTT _x � 1

2
xTTeD tKTTx

which gives the following result.
Result 4: A Lagrangian for the classically damped n-degree-of-

freedom system

€x þ C _x þ Kx ¼ 0

is given by

L x; _x; tð Þ ¼ 1

2
_xTeC t _x � 1

2
xTeC tKx

� �
(28)

Proof: Noting that the matrices C and K commute, substitution of
Eq. (28) in the Euler–Lagrange equation verifies the result. �

A Lagrangian is arguably the most compact way of describing
the information contained in a dynamical system. This informa-
tion can be “unpacked” by simply using the calculus of variations
(also called the action principle) to generate the Euler–Lagrange
equations that govern its dynamical evolution. Besides yielding
the evolution equations, Lagrangians help decipher symmetries,
and Lagrangian formulations are useful in studying stability, in
applying perturbation methods, and in finding invariants. We next
find an invariant for our classically damped n-degree-of-freedom
dynamical system.

2.3 An Invariant for Classically Damped Linear Multi-
Degree-of-Freedom Systems. The Lagrangian of the classically
damped linear system described in Result 3 is time dependent and
so the Jacobi integral cannot be directly used to find a conserved
quantity [15]. However, Remark 1 shows that each of the n
uncoupled equations in Eq. (20) conserves a scalar quantity. Using
Eq. (13) given in Remark 1, the system of equations described by
the equation set (20) then conserves the quantity

E ¼
Xn

i¼1

Ei ¼
Xn

i¼1

1

2
_y2
i þ di _yiyi þ kiy

2
i

� 	
edi t (29)

which can be more compactly written as

E ¼ 1

2
_yTeD t _yT þ _yTeD tDyþ yTeD tKy
� �

(30)

Rewriting this in terms of the variable xðtÞ and using Eq. (15) one
obtains

E ¼ 1

2
_xTTeD tTT _x þ _xTTeD tDTTxþ xTTeD tKTTxð Þ (31)

which on simplification gives the following result.
Result 5: The classically damped n-degree-of-freedom system

€x þ C _x þ Kx ¼ 0

conserves the quantity

E ¼ 1

2
_xTeC t _x þ _xTeC tCxþ xTeC tKxð Þ (32)

The quantity E is thus an invariant of the motion of the dynamical
system.

Journal of Applied Mechanics OCTOBER 2016, Vol. 83 / 104501-3

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org/ on 07/27/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Proof: Noting Eq. (15) and the fact that CK ¼ KC the following
simplifications result:

TeD tTT ¼ eC t (33)

TeD tDTT ¼ TeD tTTTDTT ¼ eC tC (34)

TeD tKTT ¼ TeD tTTTKTT ¼ eC tK ¼ KeC t (35)

Using them in Eq. (31), the result follows. Though a bit more time
consuming, it can also be directly shown using Eq. (32) that
(dE/dt)¼ 0 along the trajectories of the system. �

We next explore the invariant of motion where we use the
Lagrangian given in Result 2 instead of using Remark 1. Does an
invariant different from that given in Eq. (32) result?

As before, that Lagrangian in Eq. (14) of Result 2 is an explicit
function of time, and therefore, one cannot directly avail of the
Jacobi integral to provide an invariant of motion [16]. However,
using the transformation yðtÞ ¼ wðtÞe�dt=2 in Eq. (14) gives

L w; _wð Þ ¼ 1

2
_w2 � dw _w þ d2w2

4

� �
� kw2

2
(36)

which is now no longer an explicit function of t. One can now use
the Jacobi integral to find an invariant. The Jacobi integral for the
Lagrangian given in Eq. (36) is given by [16]

J ¼ _w
@L

@ _w
� L w; _wð Þ ¼ _w _w � dw

2

� �
� L w; _wð Þ

¼ 1

2
_w2 � 1

4
d2w2 þ kw2

� �
(37)

Transforming the expression above back to the coordinate yðtÞ by
substituting wðtÞ ¼ yðtÞedt=2 the invariant J becomes

J ¼ 1

2
_y2 þ dy _y þ ky2
� �

edt (38)

which, as shown in Remark 1, is identical to the conserved quan-
tity E obtained therein by using the Lagrangian in Result 1!

Continuing the argument, as before (see Eqs. (29) and (30)), in
order to find the invariant for an n-degree-of-freedom classically
damped system, we observe that the Lagrangians given in Eqs. (8)
and (14) result in the same invariant of motion that is given in
Eq. (32) (see Result 5).

3 Conclusions

This paper obtains Lagrangians for multi-degree-of-freedom
classically damped linear systems through the use of very elemen-
tary methods. An invariant for these damped multi-degree-of-free-
dom dynamical systems is also found. These results appear to be
new.

Classically damped linear dynamical systems are widely used
in numerous fields of science and engineering to model, analyze,
and design, physical systems that undergo small amplitude vibra-
tions. Besides providing a very concise description of a dynamical
system, Lagrangians, provide, arguably, one of the best platforms
for a deeper understanding of the physics underlying the dynami-
cal behavior of numerous natural and engineered systems.

It appears fortuitous that Lagrangians and invariants can be
found with such elementary mathematical machinery for this class
of damped multi-degree-of-freedom dynamical systems that enjoy
such widespread use.
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